of 4

INTMERS L

ROM BASED SUBROUTINE CAILLS

WITH THE IM6100

INTRODUCTION

Frequently the same or similar sequence of instructions must be
executed in different parts of a program. There are obvious advan-
tages to writing a program in which the identical piece of code is
written only once and each time it is used in the main part of the
program, the program flow is changed to execute the code. The
piece of code is called a “subroutine™ since it is a subsidiary part of a
larger routine or program. After the subroutine has been executed, a
transfer of control is made back to the instruction following the trans-
ferto the subroutine. This immediately poses the problem of how the
subroutine knows which location to return to since many different
parts of the main program make “calls” to the same subroutine.

IM6100 SUBROUTINE CALL

In the IM6100, the JMS, Jump to Subroutine, instruction is used to
eliminate the need for writing the complete set of instructions each
time an intermediate task must be performed, be it finding a square
root or typing a character on the Teletype. Since the IMB100 is de-
signed to be program compatible with the DEC PDP-8/E™ it uses the
same convention as the PDP-8 for subroutine linkage which is to
store the “return” address in the first location of the called sub-
routine. After the subroutine code has been executed, a return trans-
fer is made by jumping back “indirectly” through the first location of
the subroutine. Thus, the programmer has a simple means of exiting

/CALLING

cliodisi

b
APPLICATION BULLETIN
M008

and for returning to the correct location of the program upon
completion of the task.

This convention, though extremely simple and straightforward,
has two drawbacks, the first drawback being when the user program
is stored in read-only memory, ROM, the JMS instruction cannot be
used to call a ROM based subroutine since one cannot write into a
read-only location to establish the return link. The second drawback
is associated with “recursive” subroutine calls. It is quite possible
that one subroutine may call another. The IM6100 linkage
mechanism is applicable in this case. However, there are instances,
when a subroutine may call itself over and over, recursively. Obvi-
ously, the simple linkage mechanism will not work since a call to itself
will destroy the return address associated with the call immediately
preceding it. Althou'gh it is possible to design around recursive
techniques, recursion is important, in some cases, since it permits a
better structured program with less memory when compared with
iterative designs.

LINKAGE THROUGH RAM

If one is not interested in recursion, which is true in most instances,
ROM based subroutines may be called by providing a RAM entry
point for each subroutine. For example, a subroutine in ROM loca-
tion €600, may be called from location 5013, with the linkage
mechanism, shown below:

A SUBROUTINE BY LINKING THRU RAM

/SUBROUTINE IN LOCATION 6688 (ROM)

fEXAMPLE OF BEING CALLED FROM 5213
*5013
5613 4178 JMS @170
*B178
178 @260 2oae /RETURN ADDRESS
@171 5572 JMP 1 +] /ENTER SUBROUTINE THRU
@172 6600 6688 /RAM LOCATION @178
/LOCATIONS 171 & 172 MUST
/BE INITIALISED AT POWER ON
/EXIT FROM SUBROUTINE
*6676 /LAST INSTRUCTION
6676 5578 JMP I 8170 /RETURN VIA @170
Execution times: Memory Overhead for each subroutine in the program:
4 MHz 8 MHz 3 RAM locations in Page Zero, two of which must be
CALL ——13“5 “——_6.5;.:5 initialized at _power-c.m‘.. = | : i
RETURN 754 3.75us 6 ROM locations to initialize the two locations in ;

“ Trademark of Digital Equipment Corporation, Maynard, MA.

INTERS L

RETURN STACK

ROM based subroutines, as well as recursion, can be handled
through the medium of a pushdown stack or LIFO (Last-in-first-out).
Most of the currently available microprocessors put the subroutine
return addresses into a stack memory which may be part of the CPU
chip or part of the external memory.

When return addresses are stored in an on-chip pushdown stack,
there is a natural limit to the number of dynamic subroutines active at
any given time. For example, if there are eight stack positions, then,
generally, only seven subroutine calls may be active at one time
since the real used stack size must be kept smaller to allow some
stack depth for interrupt service routines, if any. This, of course,
assumes that no processor state information other than the Program
Counter need be saved when calling subroutines. If the Accumulator
or other status information must be saved, the number of sub-
routines that may be “simultaneously” active is significantly reduced.
The on-chip stack does allow for faster subroutine calls since exter-
nal memory accesses are kept to a minimum.

Another approach is to maintain a stack pointer in the CPU and to
store return addresses in the external read-write memory. When a
subroutine is called, the return address is pushed into the RAM stack
and the pointer is updated. Stacks in RAM are of potentially huge
depth and this allows certain kinds of algorithms to be easily pro-
grammed. If the on-chip stack is accessible to the programmer, the
depth of the stack can be extended by software. Most on-chip stack
manipulations are cumbersome and time consuming, and this im-
poses a rigid limit on the allowed depth of the subroutine calls. In
view of the fact that most microprocessor applications involve some
amount of external RAM, the external RAM stack solution is achiev-
ing wider acceptance. The microprocessor chip area is also reduced
by providing the stack memory externally.

SOFTWARE STACK

The IM6100 architecture provides for the simulation of a stack in
software. In the following section we discuss a specific software
implementation of a stack oriented subroutine linkage mechanism.

PROGRAM DESCRIPTION

A subroutine is “called” by invoking a supervisory routine,
CALL, followed by the entry address of the subroutine. CALL
leaves the Program Counter, PC, on a stack, starting at a user

2 of 4

defined base. A return from the subroutine is executed with
another supervisory routine, RETURN, which implements the link-
age back to the main pragram. The “entry address” which follows
CALL is skipped over when returning from the subroutine.

AC, LINK and MQ are not affected. The supervisory routines do
not check for stack overflow or underflow. The program is easily
modified to save AC or any other processor state information on
the stack and since the stack pointer itself is maintained in mem-
ory, one can also check for overflow and underflow conditions.

The supervisory routines may be assembled any place in the
user program. For illustration purposes, we have assigned arbi-
trary locations. The user memory is expected to be organized as
RAM in the lower pages and ROM in the higher pages. The CALL
and RETURN routines use six locations in page zero. Since page
zero is directly accessible from any other page, the supervisory
routines may be called from any location in memory.

Four of the page zero locations used by the supervisory
routines must be initialized when power is turned on. The IM6100
Program Counter is set to 7777, when the RESET line is active.
The power-on routine, starting at 7777,, is executed to initialize
the user system.

Execution times:

4MHz 8MHz
CALL 70us 35us
RETURN S54us 27us

Fixed memory overhead for CALL and RETURN:
6 RAM locations in Page Zero, four of which must be
initialized at power-on.

29 ROM locations, 17 for routines and 12 for power-on
initializing.

| Memory overhead for each active call:

1 RAM location for the stack to grow.

PAL Ill convention:
The symbols CALL and RETURN must be defined in the
user program, as shown below:
CALL = JMS CALLX
RETURN = JMP | RETX

INTEIRSIIL

Program listing:

Bl62 @288 CALLX,
@163 5564

2164 7Ta0@

@165 7T4ll RETX.
#1466 2178 STACK.
2167 80988 ACs
740@ 3167 CALLY,
Tagl 2166

Tag2 1162

Tapld 7881

Taga 3566

TaB5 1562

Ta@é 3162

7487 1167

TalB 5562

Tall 3167 RETY.
7412 15866

Tald 3162

Tala 7Te6@

7415 1166

Tal6 3166

7417 1167

T428 5562

T6E@ 1372 INIT,
7681 3163

7682 1373

7683 J16a

7684 1374

7688 3163

T686 1375

7687 3166

7772 5564 JWPI,
TTT3 7488 KCALLY.
7774 T4ll KRETY.
7775 @178 BASE,
7776 7688

77T 5776

5813 4162

5814 6600

6676 5565

#S50FTWARE STACK ROUTINES FOR IM&61@83

/RAM LOCATIONS IN PAGE ZERO

=162

seee /ENTRY POINT FOR "CALL™ ROUTINE

JMP I .+1 /G0 TO "CALL™ IN ROM

CALLY /START OF "“CALL™ IN ROM

RETY /POINTER TO "RETURN™ ROUTINE IN ROM

2 /CURRENT STACK POINTER. INIT TO
/8172 BY POWER-ON ROUTINE

20p9 /TEMPORARY LOC FOR AC

/#THE LOCATIONS CALLX+1,CALLX+2,RETX AND
/STACK MUST BE INITIALISED AT POWER-ON.

#ROM LOCATIONS

*7488
DCA AC /SAVE AC
I5Z STACK FUPDATE STACK POINTER
TAD CALLX /CALLX HAS RETURN ADDRESS
TAC /INCREMENT BY 1 TO SKIF OVER
DCA I STACHK /ENTRY ADDRESS OF USER SUBROTINE
/AND SAVE ON STACK
TAD I CALLX /GET USER ROUTINE ENTRY ADDRESS
DCA CALLX JAND PUT IT IN CALLX
TAD AC /RESTORE AC
JMP I CALLX /G0 TO USER SUBROUTINE
DCA AC /SAVE AC
TAD I STACK /GET RETURN ADDRESS FROM STACK
DCA CALLX JAND PUT IT IN CALLX
CHA CHML JAC=T77773 COMPLEMENT LINK
TAD STACK /S5TACK POINTER~-1J RESTORE LINK
DCA STACK JUPDATE STACK POINTER
TAD AC /RESTORE AC
JMP I CALLX /RETURN
=7608
TAD JMPI
DCA CALLX+1]
TAD KCALLY
DCA CALLX+2
TAD KRETY
DCA RETX
TAD BASE
DCA STACK
/CONTINUE WITH REST OF SYSTEM POVWER=-ON
/INITIALISE
7772
JMP 1 CALLX+2
CALLY
RETY
STACK+2
*7776
7688 /S5TART OF INIT ROUTINES
JHP I 7776 /RESET STARTING

/EXAMPLE OF USER PROGRAM CALLING A SUBROUTINE
/IN LDCATION 6688 FROM LOCATION 5813

CALL= JMS5 CALLX
=5d13

CALL
111 /SUBROUTINE STARTS AT 6682
/EXAMPLE OF A SUBROUTINE EXIT AT LOCATION 6676

RETURN= JMP 1 RETX
*6676

RETURN

3 of

INTEIRS L

CONCLUSION
The two different approaches for ROM based subroutine calls are summarized in Table 1.

TABLE 1

Overhead for Each

Overhead for Subroutine in the Execution Time
Fixed Overhead Each Active Call Program at 4 MHz
RAM ROM . RAM RAM ROM CALL RETURN
ALL RAM SYSTEM 0 0 0 1 0] 5.5/8.0* 7.5
LINKAGE THRU RAM 0 0 0 3 6 13.0 7.5
SOFTWARE STACK 6 29 1 0 0 70.0 54.0
*8.0us if the subroutine is not in the Current Page
If the program has more than four subroutines, the memary over- head is small. The performance penalty is not significant if subtask

head requirements for the RAM linkage technique exceeds the fixed execution times exceed 1 ms which is the typical IM6100 execution
overhead for the software stack. However, directly linking through time for a software multiply or divide at 4 MHz. The user must, of
RAM is six times faster than what could be achieved with the course, choose the appropriate method, depending on the speed

software stack, and it is only slightly slower than the optimum. The and memory requirements for a specific task.

software stack is completely general purpose and the memory over-

4 of 4

